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ABSTRACT 

Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of 
wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 
104A(rms) must be achieved over the critical range of spatial frequencies to produce the -10” contrast needed for the 
Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by 
using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same 
scale (-10“) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle 
in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high 
levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement 
incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) 
beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and 

amplitude using DM with relatively coarse steps and permits a simple correction algorithm. 
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1. INTRODUCTION 

Discovery of numerous exo-planets by radial velocity measurements combined with significant technological advances 
make the direct imagery and spectroscopy of such planets a foreseeable possibility. Instrumentally, two different 
space-borne approaches for exo-planet imagery have received much attention, namely interferometry and coronagraphy. 
In this paper we will deal only with the coronagraphic approach. Observationally there are roughly two classes of 
objects: Jovian size planets and terrestrial size planets, distinguished by the contrast suppression of their parent stars 
necessary to produce stellar stray light - planetary flux (Le. Q-1). For Jovian-like systems a stellar suppression of 
at angular scales of -4 - lOOlJD while for terrestrial-like planets, suppression of -10.’’ at similar angular scales is 
necessary. 

Suppression of optical diffraction to such a high level is theoretically possible for optically perfect systems using 
various coronagraphic systems several of which have been compared in detail’. However deviations of wavefront phase 
uniformity at very low levels (commonly referred to as scatter) will introduce “speckle” in the focal plane, a distribution 
of light which reflects the spatial frequency distribution of phase errors in the pupil. Speckle light can effectively 
overwhelm a faint planetary image and is not suppressed by a classical coronagraph. In their study of various 
approaches for a TPF coronagraph, Woodruff et al.’, conclude that, over the critical range of spatial frequencies, a phase 
uniformity of -50pm or -A/12,000 at 600nm is required to reduce speckle to an acceptable level. 

This degree of wavefront correction has never been achieved in a large scale space-borne telescope. The most studied 
means of achieving the necessary phase uniformity is through the use actuators on the primary mirror to control low 
spatial frequency phase errors supplemented by a deformable mirror (DM) placed in the optical train prior to the 
coronagraph to correct mid-frequency spatial errors. DM technology and control systems are becoming more mature; 
Trauger et al.’ have demonstrated an excellent power spectral density (PSD) result with a Xinetics DM equivalent to an 
rms surface error of 0.03nm over the spatial frequency range needed for a Jovian-like planet detection mission. 



Not as widely appreciated is the fact that wavefront amplitude must also be corrected to comparable levels as phase 
uniformity or the result will again be focal plane speckle. The requirement of very high amplitude uniformity over a 
range of aperture frequencies is new for telescope opticians. The level to which amplitude uniformity can be attained 
during manufacture and passively maintained through a complex optical system is largely unknown at the present. 

With these considerations in mind, we have begun to look at various means of providing simultaneous active correction 
of both phase and amplitude to the levels required for TPF. In this paper we investigate some means of producing such 
correction using the well developed DM technology. 

2. EFFECTS OF NON-UNIFORM AMPLITUDE ON CORONAGRAPHY 
The effect of small levels of pupil amplitude non-uniformity in imaging is similar to phase non-uniformity, namely 
creation of "speckles" in the image. The field in the image plane is the Fourier transform of the pupil function Ae" with 
amplitude A and phase 4. For small aberrations the Fourier transform takes the form 

F(Aei$ 3 AOF(1 + SA +id+) = AOF(1+ - + 27rid41) 6A 

6A 
A0 A0 

where is the phase error in waves and we have retained only f i s t  order terms in the aberrations,-and d+ The form 

of the aberrations in the focal plane is the same (except for a :phase shift). Thus where Woodruff et al.' show that 
phase errors of -h/12,000 are the limit to produce contrast of -10.'" with a Lyot coronagraph suitable for TPF, we 
would expect amplitude errors of about 5 ~ 1 0 . ~  to provide a similar limit for amplitude non-uniformities for the same 
conditions. 
To  more accurately determine the effect of amplitude non-uniformities for coronagraphy, we have simulated the effects 
of a series of amplitude aberrated pupils when used with a Lyot coronagraph. The results are summarized in Figure 1. 
The image intensity profile of a centrally located star is plotted for various levels of amplitude non-uniformity (rms). 
For a specific level of rms amplitude error, an image was calculated showing the expected speckle pattern. At each 
radial distance the contrast (image intensity over a resolution element compared to the total, central star intensity) was 
determined and the median value of the intensity distribution at each radius has been plotted as a single point. Smoothed 
versions of these results are shown as solid lines. 

A0 

A distribution of amplitude errors were chosen with varying rms amplitude. In all cases, the amplitude PSD was set to 
have a power law frequency dependence with index -2. Frequencies of 1-64 cycles/aperture were included. The 
coronagraph was a Lyot type with a focal plane stop having a radial Gaussian transmission function with the 
half-transmission point at 4hD.  The Lyot stop was 0.72 of the beam radius. 

From the figure we can get approximate levels of allowable amplitude non-uniformity for the two interesting cases of 
10.' and lO-"' contrast, corresponding to Jovian and terrestrial exo-planet detection requirements. Beyond 4AD 
distances, -10.' contrast can be achieved for amplitude non-uniformity of about 0.001 8 (intensity -0.0036); -10.'" 
contrast is achievable for amplitude non-uniformity levels less than about 0.0005 (intensity -0.001). We note that in 
any real system both amplitude and phase errors will be present and contribute to the loss of contrast. However these 
results indicate the high level of amplitude uniformity that must be achieved in addition to phase uniformity in order to 
produce sufficient contrast for exo-solar planet detection. 

The requirement of very high amplitude uniformity over a particular band of spatial frequencies :s not a typical 
consideration for astronomical instruments and there is little information on the quality of current technology regarding 
this requirement. Simple calculations of ideal coatings on a fast, primary mirror for example, indicate that variations of 
a few lo4 may be expected, with power concentrated in the lower spatia! frequencies, accompanied by a comparable 
level of polarization (we do not deal with polarization effects in this work, though its effects will also be important to 
consider for TPF). Any real observatory will have multiple components as well, each adding to the overall system 
amplitude non-uniformity. Amplitude uniformity may be much more stable than phase (figure) uniformity which can 
easily be changed by thermal changes. However, for the long term, the creation of pinholes and effects of contamination 
at the very low levels required for TPF make the question of amplitude stability over observatory lifetimealso 
problematic . 
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Figure 1: Simulation results of various rms levels of amplitude non-uniformities (indicated by labels to right of each curve 
for A(rms)*O) on the contrast achievable with a Lyot coronagraph. Zero phase error is assumed for each simulation. The 
amplitudes follow a f-* power law distribution with the indicated rms level errors. The Lyot coronagraph has a focal plane 
Gaussian profile transmission stop with half maximum transmission at 4A/D and a hard, Lyot stop of radius 0.72. Contrast 
levels of can 
be achieved with rms non-uniformity of about 0.0005 amplitude (intensity of 0.001). 

can be achieved with an amplitude rms of about 0.0018 (intensity of about 0.0036) and contrast of 

3. ASYMMETRIC DUAL MICHELSON CONFIGURATION 

Since it appears that active correction of both amplitude and phase will be required for TPF, we will consider a means to 
simultaneously correct both parameters. We suppose a wavefront corrector assembly which will take the input, 
aberrated wavefront from the telescope, correct phase and amplitude errors and pass on this highly corrected wavefront 
to the coronagraph. Current TPF coronagraphic designs (Woodruff et al.' for example) have a similar assembly but 
provide a means of phase correction only. Two questions which must be answered for such a corrector is what specific 
device will be used for correction and at what point in the optical path should such devices be situated (focal plane, pupil 
plane or somewhere between)? 

Littman et aL3 have proposed using two pixellated spatial light modulators (SLM) to provide such correction, point by 
point across the beam. The SLM are used in a zero-path-difference Michelson interferometer confi,wation with each 
replacing the usual rigid mirrors in each interferometer arm. Because the technology of deformable mirrors (DM) is 
currently more advanced than spatial light modulators and has some other clear advantages (mirror coatings can be 
largely achromatic, with low Scatter for example) we have instead chosen to explore the possible use of multiple DM to 
provide correction of both phase and amplitude. In principle, two DM located in the optical path provide enough 
degrees of freedom to correct the wavefront in both phase and amplitude even though they are intrinsically pure phase 
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altering devices. These devices could be positioned at conjugate pupils, replacing the rigid mirrors of a 
zero-path-difference Michelson interferometer as suggested by Littman et ak33 using SLM. Such a configuration has the 
advantage of relatively easy derivation of the system properties and can capitalize on the extensive development of DM 
already made’. 
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Figure 2: A schematic layout of the dual asymmetric Michelson corrector. The input, aberrated beam is asymmetrically split by 
the first beamsplitter (BS1) which reflects most light to a fixed mirror and into the output beam unchanged. The light 
transmitted through BSI is symmetrically split at BS2 into two beams, each directed toward a deformable mirror. The figure of 
each DM is adjusted, point-by-point across the beam, altering the phases at each point of the beams. All three beams are 
recombined forming a highly corrected beam at the output. A small amount of light is also present in the complementary beam 
and may be useful for active monitoring of wavefront quality during observations. 

A modification of the simple Michelson design, which we have termed the asymmetric dual Michelson configuration is 
shown in Figure 2. In this design, we assume that the aberrated wavefront is of relatively good quality but still several 
orders of magnitude from the -lo4 level needed for TPF. In this case, we should need relatively minor, but highly 
precise, modification of the wavefront 10 produce the necessary correction. This is done by (see Figure 2) providing an 
asymmetric beamsplitter (BSI) which reflects most of the beam from input to output via a rigid, stationary mirror. A 
relatively small amount of light is transmitted through the beamsplitter to the correction section; the initial reflected 
beam and that from the correction section comprise a Michelson interferometer. Within the corrector section itself we 
once again beam split, this time in an equal division, forming a second, nested Michelson interferometer arrangement. 
Following appropriate adjustment of the two DM, this faint correction beam is recombined with the stronger, aberrated 
and reflected beam to produce a combined beam which is highly corrected. The major advantage of such a 
configuration is that it permits very precise adjustments of amplitude and phase with DM capable of only lower 
precision. This also makes such a configuration more stable to drift of the DM figure over the length of an observation 
since the overall precision can be much less dependent on DM accuracy (see Section 4.1). We have chosen, in this 
study, to use only two DM, the minimum number which provide the necessary degrees of freedom for phase and 
amplitude correction and so keep the system as simple as possible for a space borne mission. 

The correction method of such a configuration can be illustrated with a simple phasor diagram representing the three 
complex fields from the single rigid and two adjustable DM at the point where the fields are combined (Figure 3). We 
represent the amplitude and phase from each of the three field components at a single point in the beam as three vectors 
with length equivalent to field amplitude and phase angle represented by the orientation of the vectors with respect to the 
real axis. This analysis is monochromatic; the chromatic properties are addressed in Section 6. If we can adjust the DM, 
point-by-point across thc beam so that the combined field has the same amplitude and phase everywhere in the beam, 
then the wavefront has been perfectly corrected. We have freedom to adjust the relative amplitudes of the fields by 
selecting the reflectance and transmission of the beamspliners, though once selected the same relative field amplitudes 



are set for all points in the beam. For each point in the beam we can adjust the field phases for the two DM beams but 
have no control over the field phase from the rigid mirror beam. 
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Figure 3: The upper panel (3a) illustrates the field configuration for an asymmetric dual Michelson with no phase or amplitude 
errors. The DM have equal and opposite steps (phase shifts). The target point is selected so that the total field amplitude is just 
less than all amplitudes in the beam. Figure 3b (middle panel) shows how the field components are altered if a phase and 
amplitude error is introuduced at this point in the beam. All three fields have equal phase shifts (rotation) and proportionally 
reduced amplitudes. The lower panel (figure 3c) illustrates the means of correction of the aberrations shown in the central 
panel. The field component due to the rigid mirror cannot be changed but the two DM are adjusted by altering their local 
height, inducing phase changes which make the total field terminate at the target point, just as the unaberrated configuration 
shown in the top panel. 

For the case of no phase and amplitude error we arrange the DM phases as shown in Figure 3a. In this case the field 
component from the rigid mirror has it's full amplitude and zero phase error. We then select a target point T with zero 
phase error and an amplitude 5 to the weakest field amplitude across the beam. The phase (rotation) of the two DM is 
adjusted so the combined vector terminates at the target point. For zero phase and amplitude error (Figure 3a) this means 
deflecting the two DM by equal and opposite amounts, or in phase space, rotating the vectors representing fields from 
the DM through equal and opposite angles. 

For points in the beam which similarly have no phase error but do have reduced amplitude, we have a configuration like 
that of Figure 3a except, as the field amplitudes decrease, we deflect the DM less (less vector rotation) so the combined 
beam still terminates at the same target point. Figures 3b and 3c show the more generai case of both an amplitude and 
phase error compared to the unaberrated case (Figure 3a). The phase error is represented by a rotation of all three field 
vectors and a reduction of amplitude shortens the length of all three vectors proportionally. While there is no adjustment 
possible for the strong field component from the rigid mirror, we can still adjust the phases (rotations) of the two DM 
reflected components to produce a combined field which again terminates on the target point. The fields following 
adjustment are illustrated in Figure 3c. 



Examination of these figures indicates several important aspects of the asymmetric Michelson configuration with DM 
for phase adjustment. First, the amplitude relationship between the DM reflected fields and the rigid mirror reflected 
field (set by the initial selection of beamsplitter properties) combined with our inability to control the phase of the rigid 
mirror field component, means that we will have a limited phase range over which we produce phase correction. 
Correction over the full range of amplitude variations can be assured by selecting the target point amplitude sufficiently 
small. However the smaller the target point amplitude the less light is in the beam passed through to the coronagraph 
(intensity a amplitude*) and the greater is the intensity of the complementary beam (see Figure 2) .  For our simulations 
(Section 5) we have assumed the target amplitude to be 0.93 giving an overall transmission of 0.86. (This amplitude 
range is much greater than would likely occur in a real system but was selected to illustrate the significant range which 
can be corrected.) Finally, we note that the case of a single Michelson configuration can be considered as a variant of 
the asymmetric dual design where the field amplitude from the rigid mirror goes to zero. This single Michelson 
arrangement has advantages in some cases which we will examine. 

4. ACCURACY OF CORRECTION AND CAPTURE RANGE 

4.1 Accuracy of correction 
The change of combined field phase and amplitude (A$,AA) with a phase change of one DM device is easy to derive for 
the case of zero phase error. Figure 4 illustrates the geometry for this situation. From the figure, it is clear that 
relatively large phase steps at the DM can result in fine adjustment of the combined field amplitude and phase, though 
the relative difference between the amplitudes from the rigid mirror (&) and the DM (A1) effected by the asymmetric 
beamsplitter. 

Im 
DM phase step 

A$ Phase change due to 1 DM step 

AA Amplitude change due to 1 DM step 

Target point 0 
Combined (total) field 

A,: Fixed mirror (Ml) amplitude 
A,,A,: Deformable mirror (DM1,DMZ) amplitude 

Figure 4: The change of amplitude and phase of the combined field due to the phase change of a single DM is illustrated. 
Because of the different amplitudes, AO and A,, between the beams from the rigid and DM mirrors respectively, a relatively 
coarse phase change of the DM (A$,) results in smaller changes @A,&) in the combined field amplitude and phase. 
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The relationships between these quantities can be derived with the following results. The change in combined field 
phase is - 

and the change in amplitude is - 



A1 
A0 

These relationships can be simplified for the cases of the asymmetric dual Michelson with - -=c land the single 

Michelson with - >> 1 and are summarized in Table 1. A1 
AI! 

Table 1 : Correction Accuracy 
Asymmetric Dual 
Michelson Single Michelson 

- < I  A0 
A I  A B 1  A1 

A#~[waves] 

The advantage of the asymmetric, dual Michelson in terms of resolution in both amplitude and phase is clear from the 
proportionality to the relative amplitudes of the DM (Al) and the rigid mirror (AO). For AI/& small, a relatively coarse 
DM step ( A ~ I )  can still produce very precise amplitude and phase correction of the combined field. For the single 
Michelson, this multiplier is fixed at the value ?h, but this can be much smaller for an asymmetric system. We also note 
that a single DM phase step produces both phase and amplitude changes in the combined field and that the relative 
distribution of the changes depends on the initial DM phase angle 8, which is set to accommodate the range of 
amplitude which must be corrected. 

4.2 Range of correction 
The range of phase error which can be corrected using an asymmetric dual Michelson configuration is illustrated in 
Figure 5. The amplitudes between the beams from the rigid mirror (&) and the two DM (AI, Az; in the following we 
assume A1=A2) are determined by the choice of reflectance and transmittance of the two beamsplitters. The DM phase 
angle (8) is selected to permit correction of the range of amplitude non-uniformities. The limit of phase correction is 
reached when the two DM fields are configured, with the same offset phase, as shown by the dashed line in Figure 5. 
Any greater phase error 9 (producing an increased rotation of the rigid mirror field) results in a combined field which 
cannot terminate at the target point for any combination of DM phase adjustments. Also note that since this maximum 
correctable phase depends on the relative amplitudes of the rigid and DM fields, a decrease in field amplitudes will 
result in a decrease of the correctable phase range. 

The relation between the amplitudes, initial phase orientation 6 and the maximum correctable phase angle can be 
determined to be 

The reduction in correctable phase range with decreasing amplitudes, referred to above, is reflected in this expression 
by the decrease in angle 8 as the amplitudes decline. 

We can simplify this relation for the case of highly asymmetric dual Michelson (- < 1)as AI 
An 

cos4 - 1 - 

4 - f2(-) A1 sin0 [rad] = f ( - ) ( ~ )  sine [waves] A I  
A0 A0  



As a specific example, suppose A1 = 0.1& . Then the range of possible phase correction is sk0.032 waves. The exact 
value will depend on the target point chosen (determining the initial offset phase angle 0) which depends on the required 
range of amplitude correction. 

We note that for the single Michelson configuration (A0 =O), we don't have such a range restriction though, as discussed 
above, the requirements for DM accuracy are greater. 

Im 

Target point 
A Combined (total) field 
&: Fixed minor (Ml) amplitude 
A,,A,: Deformable minor (DM1 ,DM2) amplitude 

Figure 5 :  The range of phase correction for the asymmetric dual Michelson configuration is illustrated. The original, zero phase 
error configuration is shown by the solid lines. As the wavefront phase error increases, the phase of the field from the rigid 
mirror (Ao) rotates. The DM phases are adjusted so the combined field still terminates at the target point T. As the phase error 
continues to increase, the DM are eventually adjusted as shown with the dashed lines. Any further increase of phase error will 
make DM adjustment of phase unable to produce a field which terminates at T and the correction will be incomplete. 

5. TWO SAMPLE DESIGNS 

In this section we consider two example corrector designs: a single Michelson design to pre-TPF (Jovian-like planet 
imager) requirements and a dual asymmetric Michelson design to TPF (terrestrial-like planet imager) requirements. The 
results shown are based on simulations using specified distributions of phase and amplitude errors. For both parameters 
we assumed PSD with l/f. dependence, and a frequency bandwidth of 1-64 cycles/aperture. Correction was made using 
the same simple algorithm in both cases, illustrated in Figure 3c. For these simulations, correction was made at all 
points in the generated field (386' pixels). The effects of more limited DM actuator density and the effects of the 
actuator influence function have not been included; these will be device specific and should be part of a more complete 
simulation. We also have assumed in these simulations no errors in wavefront sensing of the fields from the fixed and 
DM mirrors; we assume that we are able to accurately measure the amplitude and phase of the fields from the three 
mirrors. Insertion of shutters in the beam paths shown in Figure 2 and measurement at the field combination region 
(after passage through the corrector) would permit such measurements of each field component in turn. The corrector 
designs have specific limitations on the correction range of phase and amplitude as discussed in Section 4. For a 
distribution of random field errors as described by the PSD with a specified rms error level, cases in which the 
amplitude or phase exceeds the correctable range can occur. In these cases, where phase adjustment of the two DM 
could not fully correct the wavefront, we oriented the DM (set their respective step heights) to produce a combined field 
which is as close as possible to the selected target point. All these simulations were monochromatic. We illustrate the 
wavefront correction of the corrector itself and the resulting contrast when such a wavefront is injected into the same 
Lyot coronagraph model detailed in Section 2.  
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5.1 pre-TPF corrector 
This .corrector is designed for pre-TPF requirements, namely to achieve contrast of about 10.' in order to image 
Jovian-like exoplanets. We select a single Michelson design for its ability to correct over phase error of a full wave and 
it's simplicity, both qualities which make it attractive for relatively near term use. The single Michelson configuration 
requires higher accuracy in the DM adjustment than the asymmetric dual Michelson. However since the contrast 
requirements are not as great in this example as for TPF, we can still relax the tolerance on the DM step accuracy and 
achieve the necessary contrast. 

1.0x10-3~ 
* 2 . 5 ~ 1 0 - ~  A 

Table 2 contains the values of the relevant design parameters used in this simulation. We set the initial phase angle of 
the two DM to 21.6 degrees yielding a very large range of amplitudccorrection (*3.5%). With phase control over both 
mirrors (no fixed mirror present in this system), the phase correction range is a full wave. The target point amplitude 
was selected to be 0.93 yielding a high intensity transmission of 0.86. The remaining 0.14 intensity will appear in the 
complementary beam (see Figure 2) and may be used for monitoring wavefront quality during an exposure. 

Table 3: Wavefront Error Distribution 
Characteristics 

Table 2: Single Michelson Corrector System 
Uncorreci 

PSD 

DM step size 
Beamsplitters 

BSl  
BS2 

Field amplitudes 
Target point 

amplitude 
phase 

Correction range 
limits 
phase 

amplitude 

'arameters bandwidth 
1/400h (lSnm@A=600nm) Phase errors 

rm.5 
absent range 

Rm=0.5/0.5 Amplitude errors 
AO=O, Al=A2=0.5 rms 

range 
0.93 (transmission =0.86) 

0.0 

* O S A  
+0.035 

1 Wavefront 
a l / P  

1-64 cycles/aperture 

3.0x10-* A 
+1.2xlO-'A 

7 .Ox 1 0-3 
*2.9xlO-' 

I 
- 

Corrected Wavefront 

1 . 7 ~ 1 0 . ~  
range *5.OX10" 

Figure 6 illustrates the results of the corrector using images which represent the distribution of wavefront error (phase 
and amplitude) before and following correction. The phase error has been reduced from 3x10.' A rms to 1 ~ 1 0 . ~  A rms 
and the amplitude error reduced from 7 ~ 1 0 . ~  rms to 1.7~10" rms. 

Figure 7 illustrates the magnitude of the correction and the distribution of residual errors through plots of the distribution 
of phase and amplitude errors before and following correction. The substantial improvement in both phase and 
amplitude errors is evident. Also evident is the correlation between the residual errors following correction, indicated by 
the diaaond shaped distribution cf Figure 7b. Since each EM adjgstrr.er?t & a g e s  both p h a e  ~ ; ? d  z q l i f i d e  it is not 
surprising that the residuals will be correlated. 

Figure 8 shows the improvement .in performance of the model Lyot coronagraph with the corrected wavefront. Contrast 
has improved by 4-5 orders of magnitude by correction and the pre-TPF goal of contrast -10.' or less beyond 4A/D has 
been achieved. 
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Figure 6: Images of the wavefront errors 
before (upper panels) and following 
(lower panels) correction using the 
single Michelson with two deformable 
mirrors. The left panels show phase 
error, the right show amplitude error. 
The values above each panel indicate 
the range (maximum and minimum 
values in the error distribution) and rms 
of the particular error distributions. 

Figure 7: Plots showing the 
distribution of amplitude and phase 
errors before (upper panel) and 
following (lower panel) correction with 
the single Michelson configuration. 
Note that the scales of the panels are 
significantly different. The correlation 
between amplitude and phase in the 
residual errors following correction is 
evident from the diamond shaped error 
pattern of the lower panel. 



I 

10"I " ' I " " I " 1 '  I ' 1  I '  I 

i 
I I I 

Figure 8: Profiles of the coronagraphic 
output PSF without (upper curve) and 
with (lower curve) correction using the 
single Michelson corrector. The relative 
intensity/resolution element has been 
corrected by 4-5 orders of magnitude and 
now achieves the level necessary for 
Jovian-like exo-planet imagery. 
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5.2 TPF corrector 
This corrector is designed for the more demanding TPF requirements. We assume that the telescope and ancillary optics 
are corrected to a somewhat higher degree than in the pre-TPF case; the corrector will again reduce the wavefront error 
this time to achieve contrast to enable imagery of terrestrial-like exoplanets. In this case we use an asymmetric 
dual Michelson design. We selected an initial 5050 beamsplitter, sending equal light to the rigid mirror and the two 
DM. This ratio was selected to maintain a large phase correction range (k0.060A). This imposes a greater requirement 
on DM accuracy (U1200h); if the input wavefront can be improved more, a proportional reduction in DM step 
precision is possible. 

Table 4 contains the values of the relevant parameters used in this simulation. The initial phase angle of the two DM 
was set to 30.7 degrees yielding the same very large range of amplitude correction (+3.5%) as in the pre-TPF example. 
Also, as in that example, the target point amplitude was selected to be 0.93 yielding a high intensity transmission of 
0.86. The uncorrected amplitude distribution has an rms of 0.5% compared to the design full range of correction of 
3.5%. The design range of phase correction (k0.060A) is about 4 times the rms phase distribution of uncorrected errors. 

Figure 9 illustrates the results of the corrector using images which represent the distribution of wavefront error (phase 
and amplitude) before and following correction. The phase error has been reduced from 1.4xlO'*A rms to 1.6x104A rms 
and the ampiitude error reduced from 5x10-3 rms to 4.6~10': rms. 

Figure 10 illustrates the distribution of phase and amplitude errors before and following correction. Note that the two 
panels have very different scales. The substantial improvement in both phase and amplitude is very evident. In the 
lower panel (error distribution following correction) a few points are plotted which have errors in excess (all with lower 
amplitude) of the main distribution of residual errors. These are due to points which had a combination of initial phase 
and amplitude error which put them just beyond the correctable phase range and so were only partially corrected. The 
number of these is small and they will have a negligible effect on coronagraphic performance. 



Table 4: Dual Asymmetric Michelson Corrector 

Table 5:  Wavefront Error Distribution 
Characteristics 
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Figure 9: Images of the wavefront errors 
before (upper panels) and following (lower 
panels) correction using an asymmetric dual 
Michelson with two deformable mirrors. The 
left panels show phase error, the right show 
amplitude error. The values above each 
panel indicate the range (maximum and 
minimum values in the error distribution) 
and rms of the particular error distributions. 
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Figure 10: Plots showing the 
distribution of amplitude and 

panel) and following (lower 
panel) correction with 
asymmetric dual Michelson 
configuration. Note that the 
scales of the panels are 
significantly different. The 
outlier points in the corrected 
distribution are due to a few 
points in the uncorrected error 
distribution which exceeded 
the phase range limit for this 
design and so had less than 
nominal correction. 
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Figure 11: Profiles of the 
coronagraphic output PSF without 
(upper curve) and with (lower curve) 
correction using the asymmetric dual 
Michelson system. The relative 
intensity/resolution element has 
been corrected by 4-5 orders of 
magnitude and now achieves the 

exo-planet imagery. 
level necessary for terrestrial 



Figure 11 shows the effect of the uncorrected and corrected wavefront when used as input to the Lyot coronagraph 
model detailed in section 2. The contrast has improved 4-5 orders of magnitude from just over 10" to s l O - ' "  at radii 
greater than 4AD, meeting the TPF requirement. At this level of correction there is no significant difference between 
this wavefront and a perfect wavefront as far as contrast with the Lyot coronagraph. 

6. CHROMATIC PROPERTIES 

In these designs, the DM mirrors (and rigid mirror in the case of the dual asymmetric Michelson) are at conjugate pupils 
and all results have been calculated for monochromatic light. The effect of broad band light can be seen by reference to 
Figure 3a, showing the dual asymmetric Michelson fields in a zero phase error configuration. The two DM have equal 
and opposite step heights (d) to keep the total phase zero but reduce the amplitude slightly so that a range of amplitude 
errors can also be corrected. Suppose this is the configuration for the shortest wavelength of a bandpass AA. As the 
wavelength increases, the relative phase differences due to the fixed DM step height, d, decreases. The two phasors 
representing the fields from the DM in Figure 3a, rotate toward the real axis and the total field amplitude increases. The 
total field phase stays at zero; the effect of the finite bandpass is to cause an effective amplitude error (increase) of the 
total field with greater wavelength. We can derive some expressions for the magnitude of the finite bandpass amplitude 
error for this simple case to get an idea of the acceptable bandpass for the dual asymmetric (and also the single ) 
Michelson designs. 

The total length of the two DM fields along the real axis is 

For a small change in phase angle 8, due here to the change of wavelength, the change in this length (corresponding to a 
change in amplitude) is 

The change in phase angle with a change in wavelength can be expressed as 

s = ~ A ~ c o s O  

AA = 2A1 ABsinB 

271 8 = -(2d) E. 
27r(2d) ai, ae=- d/. = 6'- E. i, 2 

e Ae= - R 
Where R = &, is the ratio of the nominal wavelength to the bandpass, a term known as 
spectroscopy. Combining these gives a relation for the change of amplitude with wavelength, AAl,as 

AA]. = 2A 1 sin 0 (i) 
The amplitude error is minimal for small AI (highly asymmetric configuration), narrow bandpass (large R) and 
especially for a small initial DM phase angle 8. 

resolving power in 

However, is is also useful to consider the range of amplitude correction, & , for a given configuration of AI,  and 8. 

A small value of initial DM phase angle 8, which provides the least bandpass error, also produces the least range of 
amplitude correction. Thus there is a trade between the required amplitude correction range and the effective bandpass 
over which amplitude errors are negligible. 

AC = (2A1 + Ao) - (s+Ao) = 2/11 (1 -COS@ 

These two conditions can be combined as 

This gives a relation between the bandpass (through resolving power R), the amplitude error due to finite bandpass (AA) 
and the range of amplitude correction (Ac). This result applies to either the single or asymmetric dual Michelson 



configuration. 

As a specific example, assume we allow the bandpass error to equal 5x104, approximately the minimum value of 
amplitude error for TPF requirements. In this case, if the necessary amplitude correction range is 0.5% (this is the total 
correction range - the distribution of amplitude errors should have an rms a few times smaller to make sure nearly all 
points are fully corrected), then a value of R=20 is determined. That is, the allowable bandpass is 1/20 of the nominal 
wavelength. 

7. SUMMAKY 

We have proposed and performed some initial analysis of an interferometric wavefront corrector which could be used 
with a coronagraph for high contrast imaging particularly for a pre-TPF or TPF mission. The corrector uses two DM 
placed at conjugate pupils. The purpose of this device is to provide both phase and amplitude correction to a wavefront 
to the very high levels necessary for exo-solar planetary imagery, and we have illustrated the effects of amplitude 
non-uniformity, in particular, with a Lyot coronagraph model. The asymmetric dual Michelson has the advantage of 
achieving high precision correction with less accurate DM devices and is less sensitive to DM drift during observations. 
It does have a limited phase correction range but this may be satisfactory for the optical quality to be used in these 
missions. A single Michelson can correct a full wave of phase error but has higher requirements on DM accuracy and 
stability. Example designs using both variations have been provided and simulated and show that they can produce the 
required phase and amplitude uniformity levels. An estimate of the allowable bandpass has also been provided. 
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